Thursday, May 2, 2019

Iris Publishers- Open Access Journal of Textile Science & Fashion Technology | Investigation of Fabric Behaviours in Compression Sportswear Under Extended Condition


Authored by Sertaç Güney

Compression sports garments in usage stretch up to 10% length and 60% in width, depending on the circumference variations of body. This stretch also changes the loop density, loop shape, porosity and thickness of fabrics. Especially for heat and water vapor transfer, it is expected to play a very important role. Compression sportswear are generally produced from knitted stretch fabrics, which get extended on wearing and remain under extended condition. Since they are worn next to skin and are direct contact with the body surface, their comfort properties are more effective on overall clothing comfort. As Permeability and porosity are strongly related to each other, we compared air permeability of fabrics in extended condition considering the fabric extension results taken from 3D simulation. The aim of this study was to investigate the effect of fabric extension on fabric Behaviours (air permeability, loop density and thickness of fabric) of eleven stretch knitted fabrics used largely in compression sportswear. Revised patterns in virtual garment simulation can help to use the air permeability property more effectively to improve the overall clothing comfort. The results of study show that air permeability and loop density which are strongly related, change significantly when the fabric is posed under an extended condition, especially it is more visible in warp knitted structures. Investigations on fabric Behaviours under extended condition could be the key for solution in ventilation of appropriate zones on garment.

High-tech sportswear has been widely applied in special sports and has played an important role in improving athlete’s performance in speed, body control, stamina and strength [1]. Every fabric property should be analyzed in detail for better performance. Compression garments elongates up to 10% in length and 60% in width when worn, depending on the variations in body circumference. This stretch also changes the loop shape, density, thickness of fabric and also porosity. All these changes are expected to affect significantly the comfort behavior of fabrics [2].
Air permeability is often used in evaluating and comparing the “breathability” of fabrics due to their porous structure. Air permeability is an important factor in the comfort of a fabric as it plays a role in transporting moisture vapor from the skin to the outside [3] and also in heat transfer, containing open structure pores, airflow carrying heat energy transfers from one side to another side by conduction and convection [4].
Elastane are used mostly in sportswear for compression garments which are used to improve blood circulation, reduce lactic acid and DOMS and it can also be used to help hold a garment up. Elastane content effects on the air permeability. Air permeability is much better for the knits with no elastane than for the knits with incorporated elastane due to their porosity. The air permeability of knitted fabrics is generally investigated in relaxed condition [5-6]. The researches on air permeability of knitted fabric in extended condition are very limited so that this study could be useful for further researches. In this research field, Virtual garment simulations can be useful to see the fabric poses on body zones.

To read more...Journal of textile science

To view more Journals...Iris Publishers

No comments:

Post a Comment

Iris Publishers-Open access Journal of Civil & Structural Engineering | A Parametric Study on the Effects of Shear Wall Locations in a Typical Five-Story Reinforced Concrete Structure Subjected to a Severe Earthquake

  Authored by  Nader Zad*, Abstract To minimize earthquake-induced damages in structures, one of the most reliable ways to design and constr...